16

Electrostatic Potential and Capacitance

Diagram Based Questions :

1. Figure below shows a hollow conducting body placed in an electric field. Which of the quantities are zero inside the body?

- (a) Electric field and potential
- (b) Electric field and charge density
- (c) Electric potential and charge density.
- (d) Electric field, potential and charge density.
- **2.** Equipotential surfaces are shown in figure. Then the electric field strength will be

- (a) 100 Vm^{-1} along X-axis
- (b) $100 Vm^{-1}$ along Y-axis
- (c) $200 Vm^{-1}$ at an angle 120° with X-axis
- (d) 50 Vm^{-1} at an angle 120° with X-axis
- 3. Two spherical conductors A_1 and A_2 of radii r_1 and r_2 ($r_2 > r_1$) are placed concentrically in air. A_1 is given a charge +Q while A_2 is earthed. Then the equivalent capacitance of the system is

(a)
$$\frac{4\pi \in_0 r_1 r_2}{r_2 - r_1}$$

- (b) $4\pi \in_0 (r_1 + r_2)$
- (c) $4\pi \in_0 r_2$
- (d) $4\pi \in_0 r_1$
- 4. The effective capacitance of combination of equal capacitors between points A and B shown in figure is

5. In the circuit given below, the charge in μ C, on the capacitor having capacitance 5 μ F is

Get More Learning Materials Here : **_**

Solution

 (b) Electric field is always zero inside a conductor. If there is any excess of charge on a hollow conductor it always resides on the outer surface of conductor. Therefore inside a hollow conductor there is no charge and hence charge density is zero.

2. (c) Using
$$dV = -\vec{E}.d\vec{r}$$
 10V
 $\Rightarrow \Delta V = -E \Delta r \cos\theta$
 $\Rightarrow E = \frac{-\Delta V}{\Delta r \cos\theta}$
 $\Rightarrow E = \frac{-(20-10)}{10 \times 10^{-2} \cos 120^{\circ}}$
 $= \frac{-10}{10 \times 10^{-2}(-\sin 30^{\circ})}$
 $= \frac{-10^{2}}{-1/2} = 200 V / m$

Direction of E be perpendicular to the equipotential surface *i.e.* at 120° with X-axis.

3. (a)

The figure shows two independent balanced wheatstone Brides connected in parallel each having a capacitance C. So,

$$C_{net} = C_{AB} = 20$$

5. (b) Potential difference across the branch de is 6 V. Net capacitance of de branch is $2.1 \ \mu F$

So,
$$q = CV$$

 $\Rightarrow q = 2.1 \times 6 \mu C$
 $\Rightarrow q = 12.6 \mu C$
Potential across 3 μ F capacitance is
 $V = \frac{12.6}{3} = 4.2$ volt
Potential across 2 and 5 combination in parallel
is $6 - 4.2 = 1.8 V$

So, $q' = (1.8) (5) = 9 \mu C$

Get More Learning Materials Here :

